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hinu~cr

The purpose of this paper is to collect certain wave propagation
results in two-and-one-half dimensions - defined as three dimensional
propagation in a medium that has variations in two dimensions only. The
results of interest are for sources and receivers in the plane determined by
the two directions of parameter variation. The objective of this work is to
reduce the analysis of the in-plane propagation to two dimensional analysis
while retaining - at least asymptotically -- the proper three dimensional
geometrical spreading. We do this for the free space Green's function and
for the Kirchhoff approximate upward scattered field from a single
reflector. In both cases, we carry out a derivation under the assumption of
a background velocity with two dimensional - c(xz) - variationt we
specialize the results to a constant background velocity and a depth
dependent background velocity. For the convenience of the user we have
included a glossary and two tables of equation numbers to help in finding
specific results.
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Ati) amplitude of ray theoretic Green's function in 3D. constant
I density.

*A 2 (3) amplitude of ray theoretic Green's function in 2D. constant
dons ity.

a ray parameter labeling rays; polar angle of initial direction
S in (z,y)-plane.

B amplitude of ray theoretic Green's function in 3D, variable
density.

B 2  amplitude of ray theoretic Green's function in 2D. variable
density.

p ray parameter labeling rayst azimuthal angle with respect to
ze becomes polar angle in (z~z) plane when y =0.

cWz background velocity.

1 CWz background velocity depending on z alone.

c+(c-j propagation velocity below (above) reflector, S.

3 Jacobian of mapping via rays in D, 8zz, 3 /(~~)

K Jacobian of mapping via rays in 2D, 8(x1,xS)Ia(cr,A). a 0.

-n(z) index of refraction with c(z) background velocity.
n(z) =Q)c~)

2 Vt. P*L) = /c.

R ray theoretic reflection coefficient defined by (46),
specialized to constant background velocity in (62).

S r I -4(x + (Z -i)0

*p variable density.

aray parameter for which j2 1/ca along a ray.

-C W~ traveltime.



US (3;) upward scattered wave from a reflector S due to a point
source at evaluated at ~

(Z,Y.Z) Cartesian coordinates.

IXL (X20z1 8) Cartesian coordinates.

z Cartesian coordinates.

source point for Green's function.

Eo turning point; n(zp) =sin,

. . . . . ... 0



The gathering of seismic data over a line on the surface of the earth -

or ocean - rather than over a planar or areal array - is still a pro-

eminent methodology. Consequently, methods of reflector imaging and earth

*parameter estimation - migration, structural inversion, seismic inversion

must be based on models of the substructure and wave propagation which

can produce meaningful results from this dimensionally constrained data.

Finite difference wave equation migration [Claerbout, (19761 deals with

this difficulty by assuming a two dimensional model, both for the

substructure and the wave propagation. The two dimensions are the depth -

x or 2, - and the transverse range along the line of the seismic

experiments x or xI. While it might be reasonable to assume that the out-

of-plane variations are small enough to be neglected, the implementation of

a two dimensional wave equations guarantees that the amplitudes generated

will be progressively more inaccurate with traveltime due to improper

eharaeetrization by the two dimensional wave equation of the geometrical -

spreading effects in three dimensions.

On the other hand, Kirohhoff migration [Schneider, 19781, k-f migration

-J-etalt, 1 n7|, ad Dora Inversion [Cohen and Bleistein, 19791, among others, -

pe.,orly allow for three dimensional propagation of waves - within the

aocracy of the assmptionas of these methods. However, neither these

methods nor any other can treat three dimensional variation in the

substructure whea only a linear survey is carried out on the surface. The

limitation of the data is accomodated by assuming that the earth parameters

t-1-
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vary only with the in-plane variables - (x.z) -- and are independent of the

out-of plane variable, y or x2.

Thus, the earth variations are essentially two dimensional -

cylindrical in three dimensions - while the propagation is three

dimensional. A few years ago, I heard a presentation by G. Hohmann on an

electromagnetic problem with the same type of geometry. He called this case

two-and one-half dimensional - 21/iD. I have adopted that terminology, as

well.

In 21/2D one is almost always interested in only in-plane values of the

wave field; that is, values of wavefield with y or x2 equal to zero.ri
Certainly one needs only in-plane values of the earth parameters. Thus,

except for the effect of three dimensional spreading, the problems of

interest are essentially two dimensional.

In research in our own group, we are constantly in need of in-plane

evaluations of 2 1 /2D asymptotic wave fields both for inversion algorithms

and for direct modeling. We find that we can reduce such wave fields to 2D

wave fields multiplied by appropriate factors, also determined totally in

2D. The purpose of this note is to derive and tabulate some of those

results. The starting point for these results is either three dimensional

ray theory or a generalized version of the lirchhoff approximation for the

upward scattered wave for a single reflector. These results are available

from many sources. However, I shall use my own book [Bleistein, 1984] -

referred to below as MP - because I can find those formulas most easily

there.

-2-.. . . . . . . . . . . . . . . . .



We shall state results for a c(z.z) background velocity and specialize

those to constant background velocity where the results become explicit and

to a c(z) background velocity where the results are somewhat more explicit

than in the general case. For most of the paper, we discuss the case of "..

constant density and variable soundspeed. However, in Section 5 we describe

the necessary modifications for variable density. For the convenience of

the user I have included a glossary of the notation of this paper and two

tables of ernation numbers to help in finding specific results.
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2. ASUR9Pl C 21/2D 6e NS pUNCnII

We consider the following problem for u: -

0

a
T a + u -6(1 - 1 6(z) (zas  ) (1)

Ci

In this equation, Vs is the Laplacian in the variables x (x,y,z) :

(Zx, x,X S ) and C = c(zz) = c(x, XS). We use the convention that z = x3 is

positive downward. We propose to solve this problem by ray methods [Keller,

1958, Lewis and Keller, 1964]. Our objective, here, will be to reduce this

ray theoretic problem in three dimensions to a problem in two dimensions

when X2 = 0 while still retaining the correct solution of the three

dimensional problem by appropriate adjustment of the equations and scaling

of the solution.

We assme that

ult;o) ~ A(x) exp(iovlx) (2)

with v a solution of the eikonal equation,

(V) = /c (x) , (3)

and A a solution of the transport equation

2 VA*Vv + AVs- = (4)

-4- -



(See NNWPD Sections 8.2 and 8.3, for details of the derivation of these

equations and results below related to ray theory.) The functions, r and A.

F must also satisfy the conditions

v 0, for z= = (5)

j-jA 4 1/4rf, as z 4 (6)

We shall solve (3), (5) by the method of characteristics. The

characteristic eqain or ra equatons are 0

2 L) VC T, = 1c 1 (x)

I d
p=V(1c3 (x)) , () .- (7)

* The solution we seek is the conoidal solution for which the rays emanate

* from a point, 1,. We require initial data at ar - 0 for each of the seven

*unknowns in (7). The data for v is given in (5), since the rays emanate

from ~,the Initial values of x are known. For the conoidal solution, the



initial values of p are not known, except that they must be constrained by

the eikonal equation, (3), itself: p2 = 1/c2. Thus, there are two other

parameters which serve to label a ray by its initial direction. Therefore

the initial data or Lay data for (7) is

x(0) =

2(0) = l/c() (cosasin , sinasin , cosp) . (8)

TO 0 .S
The solution of ordinary differential equations (7) and the ray data (8) is

a family of rays with parameter c, distinguished from one another by the

choice of the parameters a and P. Along each ray, the value of T is known,

as well.

The specific assumption that c is independent of x2 allows us to obtain

a part of this solution in closed form. From (7), the equation for p, is

is e 2 0(9)
2 C

Thus, ps is constant on each ray, that is, independent of a. From the ray O

- data in (8), we know the value of that constant,

19

P2 • sin a sin . (10)

With Ps independent of a, the equation for x in (7) now becomes "

-6- S
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particularly simple. Taking account of the initial data in (8). we find

* that

xsine sine (1

We remark that x5 2 0 for any choice of (xl,x,) only if we choose those

* rays for which sin a =0.

The transport equation, (4), can also be written as an ordinary

differential equation In the ray parameter, a. 1the solution of that

equation is [IIIWP (8.3.12)1:

rsi0

A (12)
4x Jc (0 , a,.P

In this equation, J is the Jacobian of the transformation from x to (ua,j)

via the solution of the ray equations, (7) and (8):

3= 8(~~ (13)2 x

-7-



The following changes In notation from the refernco have been made here:

(i) 714y (i p(ge) -41/c(LV (iii) p(Z(a)) 1(a) -4J(a,a.ft). For the

last of these, we have used (8.2.29) with X~ 1 to redefine J as in (13).

7h. solution (2). with v a solution of the system (7) and (8) and A

given by (12), is valid up to the first zero of I for a A 0.

. . . .. . .0



3. Aymtotie Ia-Plae 2*1,3 Gozess Funetiem

We shall now consider the results of the previous section for the case -

X2 0. We shall refer to this case as the in-plane solution. As noted

above. setting x2 0 is equivalent to setting a 0 in (8) and (11).

Let us consider the remaining equations in (7) and under the assumption

that a 0:

is Psi(O) CS2 I

1(0 18 i ine (14)

r2 8x -- X

c'(x) *T(O) 0

* This is a closed system of equations for which p. + P. 1/c'(z). since

P2 0. In fact, it is just the system of ray equations for solving the 0

eikonal equation in two dimensions. Bence, an algorithm for solving ray-

* equations in 2D may be applied to determine the in-plane rays and phase. I

do not believe that this would surprise anyone who has read this far.



Lot s nw cnsier he oluion(12)fortheampitue werea 0

In particular, from (11), we can calculate the elements of the second row of

the matrix arising in 3. (13):

ax 1
- in asin -0. a 0 1

2 a
M Coasin si n ie aw0 (15)

ax
2. .-j sina Cos=0, a 0.

We see that only the second element is nonzero. Thus, the 3x3 determinant 1

in (13) can be reduced to a 2x2 determinant,

%c(i) sin K; (16)

K (x~; (17)

The Jacobian, K, can be computed directly from the system (14) for the

solution of eikonal equation in two dimensions. We use (16) In (12) and

obtain

-10-



- (18)

10

By using (14) and (18), then, we obtain the in-plan. 21/,D asymptotic -

Green's function totally in terus of solutions of the 2D ray equations. We

remark that it was the simple form of this result which motivated the

particular choice of ray parameter a, for which 1s _ 1/c(x), rather than

such alternative ray parameters as arc length on a ray - for which i' = 1

or traveltime - for which 2 = c8(Z). We note, however, that a is an

unphysical variable with dimensions (length)2/time.

The in-phase representation of the solution (2) now takes the form,

ezp {iWO J
u e (19)

4wx

with r. a and K totally determinable by in-plane calculations. Nonetheless,

this solution has the proper geometrical spreading for three dimensional

propagation.

The solution (18) can be more precisely related to the solution of the

two dimensional transport equation. (The reader should note, however, that

the latter amplitude is the response to a line source in three dimensions.) _0

Let us denote that solution in 2D by As. The result is given by WP .

(8.3.30), but in different notation. The correct result is

%-
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As " sip (iuI4 gin) (20)

In this equation. we have also included the proper power of a as given from

the discussion above (8.3.30) and we have accounted for negative w, through

the absolute values and the factor singw.

By comparing (18) and (20), we find that

A - As T exp 1-ir/4 sgnw) • (21)

Thus, if one has available a 2D ray equation routine which calculates As

directly, one can use this routine to generate the in-plane 21/SD amplitude

by employing the complex scaling indicated by (21). -

I further take the position that this multiplier is an adequate 'quick

and dirty' correction to apply to an exact 2D equation solver. The reason

is that in geophysical applications, we are almost always interested in the

solution many - at least three - wavelengths from the source in a slowly

varying background medium. In that limit (high frequency), an asymptotic

adjustment will suffice.

It should also be noted that all refraction and reflection effects of

the in-plane 21/,D propagation will remain in-plane. Thus, the same

multiplier can be used for a discontinuous c(x,z). However, one must take

care to measure a from the source point and not from the discontinuity

12-S. . . . . . . . . . . . . . .. .-. ,



surface. Furthermore, one must then use an amplitude A. which properly

accounts for in-plane transmission effects.

For two special choices of c(zz) we can be more explicit about the

relationship between a and the Cartesian coordinates. In the simplest case,

C - constant - co. the ray equations, (14). with the indicated ray data can

be solved explicitly. First we observe that fi1 " - 0 and (p1,ps) is a

constant vector given by the initial data with c(g) - c5 " We them solve for

X, and x. in (14):

I C1 + co 0 sine, x 4 + C a CosA. T - a/ (22)

We now solve for a in the first two equations

a ot, r - To+-rx4)(1 (23) ---.

and find, upon substitution into the third equation.

r -t/C (24)

Furthermore, we can find K by applying the definition (17) to the equations

for the rays in (22). The result is -

• o13 -
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U X. . . . . .. .- . .. . . . . . . . . . . ..

K ale* r/ce  (25)

We use (23) and (25) in (18) to obtain

A = (4ar) (26)

By inserting (24) and (26) in (19) we obtain the exact three dimensional

Green's function, which indeed, is equal to its leading order asymptotic

expansion. This serves as a simple check on the method.

As a second example. let us suppose that c is a function of z above,

c = o(z) - c(xz). In this case, it is easier to recast (14) as a system of

equations in z and express a as a function of z, as well. We rewrite (14) as

dz Pl

U1' C'x prd-" - • x(i) - s,

- 1 ( c-, 5-.

dp2 1 COSA

di 2p3 Q a I'() 3 (27)

-"dz ca m 2 +Q 3 0

i a (Z)(f

pdo 1 u(rQ 0

di. p" 3

-14-
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From the second equation, here we see that P1 is a constant on each

ray, given by its initial value:

P1 -(FT sine 28

This is Snell's law for a medium with depth-dependent velocity. Since

(Pl,p8 ) satisfy the eikonal equation in the form In (7), we conclude that

ps () QI---.-sin'sP (29)

* We have chosen the positive square root, here. because we are interested in

rays which are directed downwardt that is, z must increase with a. At z~,

the square root is real for all P. For 101 < w/2. ps will remain real in

some neighborhood of ~.We continue our analysis in that region.

We can now proceed to solve the remaining equations in (27)



z

I ~~ $__~ in~

= dz'(30)

cz~.)1 $ina_

c'(') cz(z') c 2(t,)

= [ dz'

I 1 sinap

It is this last factor which we use in (18) or (17) or (21) to adjust the

in-plane Green's function for geometrical spreading out-of-plane.

For computational purposes, It is desirable to express these results in

terms of an index of refraction:

n(z) - ~ ) *(31)

Those equations are9

p -16-



z

x~ ~=sinp dz' 04 uk ( z ) s i n 2 A i.

-V n2(z ')dz' (32) 1

€( J) 4n2 (z,) - sinsP

z

c(42) 
dz'

4nlZ ,
)1 -ainSO

To complete the computations for the Green's function for this case, we

must determine K. defined by (17). To simplify the computation, we note

that

a (zip x 18 (X1, ) 8(Z.A) a z

by application of the chain rule for Jacobi determinants. The derivatives

in the last expression are partial derivatives because jIz are determined

in the plane as functions of the two variable P,z. We calculate az 1 /eP from

the first equation in (31)t 8z/8o is determined from the last equation in -

(28). The result is that

- 1 7 - _



z
Oxz OZ n2 zraK n'(z) -s inaP i n'(/dz (34)0

c J(na(z') -iat

We can now use (18). (30) and (32) in (19) to write down the asymptotic

21/,D solution evaluated in-plane. The result is given parametrically with

parameter P. For each coordinate pair, (xL, z), we determine P from the 0

first equation in (32). We substitute this solution into the second and

third equations of (32) to determine - and a, and we substitute into (34) to

determine K. When all of these results are substituted into (19), u is

determined.

We remark that the function K in (34) is never equal to zero for P

Sz 4 ,. That is, the downward propagating part of the Green's function in a

c(z) medium has no caustics. The only pathology that could occur is that

for some P, the ray propagates to a depth, zp, such that n(zp) = sin P. If

we assume that n'(zo) A 0, then K has a finite nonzero limit at zp even

though the integral in (34) diverges for z z z,. To see why this is so,

multiply and divide by n(z') under the integral sign and integrate by 0

parts. The result is

-18-
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~777]

K _ 2 inp Cos P n(z) +)

n'() nzz)si 0 n'(C J Yin A

z

) dz'

WJ 4n2z,) i n 20)

The integral, here, converges even when z =zp. Thus, if we now take the

limit as z -4 zp, we find that

os 0 n(zp)
lir K = -.- . (36)

z-4z C

To be completely rigorous in this derivation, we should only integrate by

parts over an interval from z. to z, where z, is sufficiently close to zp to

guarantee that n'(z ) *0 for z. z - zp. Of course, the sane result

obtains because the remaining integral on the interval form C. to so remains

finite as z -4 zp while the square root multiplier approaches zero in that

limit.

The point zp is a turning point for the ray labeled by p. On the

continuation of the ray# z decreases. To obtain the extension to this ray

continuation, we need only replace the integral over the interval (Qg,z) by

-19- 5
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a pair of integrals over the intervals (z,zp) and (jzp):

x sinp + dz'

In(z )  sin s

= rr + n (z')dz' (37)

p p .

ZnZlz
) - sin'

to z

a= c(S) + dz'

z z in T-~~

The determination of K is not so straightforward. We cannot simply

differentiate the first line, here, to determine ax1 /8P, because the

. resulting integral diverges. We must first integrate by parts as was done

- above to analyze K near z,.

f t, i, iI() i ~s I + 2  -sn I

n(z)n'(z) n(t.) n'(Q)

(38)

+fn2( Z') -Sinop dz' 0

[j53IJJ (z')n'(z')I J. .' d .

20-
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and then differentiate with respect to p. This leads to the following

result for K:

K = njl _ sins P cosp

-n( ,) - 2 sinP

n 2(Z) -2 sins  n 2+8 2 sn

i' (39)
: + I nS(z' 1 - 2 sin s P dzJ

e Z~~ ~ ~~p P 'u'z l, _in -

Again, we must take care not to use this result if n'(z) = 0 over some part -

of the domain. We would revise this result by using the integration by

parts technique only over a portion of the domain of integration near zp in

(37) and simply differentiating with respect to p in the remaining integral. •

We remark that now K can be zero for an appropriate c(z). That ia,

beyond the turning point, the ray family can have a caustic.

This completes our discussion of the in-plane analysis of the 21 / 1 D

asymptotic Green's function.

-21- -
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4. The Ia-Plane Kirchhoff Approximation in 2alD.

Ve shall now consider the following problem in a c(z,z) medium. A
0

point source is located at ( t), a receiver is located at (iq,.O.Aq) and

a reflecting surface, S, is located at depth. Consistent with our interest

in 21 /2D, we assume that the reflector is cylindrical, that is, the

reflector is generated by a curve in the (xz)-plane and straight lines

through that curve parallel to the y-axis. Thus, we characterize the

reflector by the generating curve C in the (x.z)-plane.curve -

C: z a (s), z - (S) (40)

We shall take s to be an arclength variable along C. Our objective is to

obtain an asymptotic representation of the upward propagating wave arising

in response to the reflector under the assumption that the downward

propagating wave has no caustics before impact with the reflector. Our

representation is to be given totally in terms of in-plane functions.
p

]- The reflector is to be a surface of discontinuity of the velocity

profile, with no discontinuities above it. Thus, we will denote by c-(s)

and c+(s) the limits of c(x,z) from above and below S. respectively.

We begin our analysis with the Kirchhoff integral representation of the

*.. upward scattered field [WMP(8.4.S)]:

-22-
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0

________U .US z (i t dS . (41)

S

In this equation, us(n;t) denotes the response at R due to a source at LI

G(z;3) is the free space Green's function at x due to a source at It /an is

the upward normal derivative on S.

We shall make a number of asymptotic approximations in the into-

gral (41). First, we shall use for G the asymptotic Green's function of

Section 2. We cannot, as yet, use the results of Section 3, since the

integration in (41) is over a domain which extends out of the plane, y - 0.

To emphasize the dependence on the source point, we write the solution (2)

as

Oil~j) = (Ar l) ezp [iWC(zt~q)} (42).

For the normal derivative of G. we only calculate the leading order term at

high frequency, arising from differentiating only the exponent:

•On - iR'rV(z, 9 ) KX!) exp(ie*(A13)) (43)

* " Here, £ is an upward unit normal vector and the gradient is to be calculated -'

.-- with respect to the variables, x. It would be inconsistent to retain the

term arising from the differentiation of A. itself, since this is of the

-23-
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same (lover) order as a term arising from a first order correction to A

multiplied by iuA.Yv.

For us(_;L) on S. we will use a ray theoretic approximation. This

field is the reflected wave on S due to the incidence of the wave in

response to the point source at 2, say. u, (!;). This function is also a -

Green's fuction:

ui(z4) = G(_4) . (44) 6

The value of %(jrj) on S is just the ray data for the upward reflected

wave. This ray data is derived in [NM/P. Section 8.3]. We find that

-u5 (x;L) 
= Ul(z;_ _x on S , (45)

where the ray theoretic reflection coefficient is given by [NWP(8.3.47)]:

8,/1n - [gn , 1/anj - '+ [ /an]
I s I.7+an C (46)

In this equation, we have used the notation

- . a- -C( 7
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In sumary, then, we use onS

u(;LV -R A(&;L) exp fis(.z;L)) a(3

a us i5VZ;;) L);) x

The minus sign in the second line hero Is not obvious. It arises from the

fact that the normal component of the gradient of the phase on the reflected

wave must be opposite in sign to the normal component on the incident wave

in order that the incident and reflected waves be oppositely directed with

respect to S. -

These two approximations constitute a generalization of the

approximations credited to Rayleigh, Somerfeld, Fresnel and Knygeas. as

well as Kirchhoff. For discussions of the distinctions between these

* approximations. see Goodman [19681, Kohn and Aihilali [19771 and Wolf and

Marchand [19641. For simplicity, we shall refer to (46) as the Kirchhoff

* approximation.

We substitute (40). (41) and (46) into (31) and obtain

-S'q i* RA(j:-) AQ.j; 1 ) szp(iv[:(z:LC)er(Zg)IJ

S

I[Vrj~q)+ VT(ZgL)l dS --

-25-
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This asymptotic representation is liven in terms of the 21 /sD ray theoretic

amplitude and phase introduced in Section 2. lovever. it still requires out

of plane amputations of amplitude and phase. 0

We will now reduce the representation (49) to one in which the

integrand is given totally in terms of the in-phase amplitude and phase. To

do this, we note first that

dS = ddy ds dx, .(S0)

That is, the differential surface area is the product of the differential

arc length ds along the generating curve. (40), and the differential out-of- .

phase coordinate.

We will calculate the integral in y -x2 by the method of stationary

* . phase [IMP, Chap. 21. The phase is

= ~(:~)+ c(jR) ,(1

with first derivative

Tx ex +~ In~;~ P2 (25Ig 52

In the last equation, we have used the notation of (7), but with arguments

that properly relate each p. to the corresponding T.

-26-



At the stationary point, Of/oz. 0. Thus, the sum of the pss must be

zero. From (10) and (11) we see that both ps's will have the same Sign as

* Z5XS for X2 14 0. Thus, the sum can only be zero when xx 0. That is, the- --

phase has a stationary point in x2 only for x. 0. In terms of the

parameters a and ~.this occurs at a 0.

Te must no- determine

a1 ap 3(zj) + P p(11!1)
2+

Oxz Ox, SO15

at X2 0 or a -0. To do this, we rewrite (11) as

is p, 2 (54)

* and differentiate implicitly with respect to X2:

LOp 2  6(5
r1- 6 + p -o

Ox, a Ox,
SS

K When we evaluate at p2 0. we find that

-27--



aii * p 5s 0 .(56)

ax2

- ~This result applies equally to ps(Zq~) and pjf),except that a must be

properly interpreted as the parameter on the corresponding ray, that is, the

parameter connecting 3 to L, or I to 11. To distinguish between these two ray

parameters, we shall denote the first by aC and the second by a. Thus.

+ L. (57)

We note that sgn a!IOzz + 1 at x2 0. This result is needed for the

stationary phase evaluation. Furthermore, the entire integraud is to be

evaluated at x2 =0, that is, in-plane. Thus, we may use the results of

Section 3. to determine A, T and a. now for each of the fixed points, . and

~.The result Is

* 2 (LwnI exp(3ni/4 raw -1 -1

(40r)2J K (7 )

CD I = 0

I * fi[V-rQ!,V + VT(;,g)1 ds.S

p -28-



o

In this equation, It and in are the in-plane Jacobians defined by (17) for

the rays emanating fron and !I, respectively. Evaluation of the integrand

at x2 - 0 reduces all of its elements to the in-plane results of Section 3.

It is also worthwhile to specialize (58) to the case of backscatter or

zero-offset, Us(J;'). We can then dispense with the subscripts and q.

The result is 0

fie-, ezp{$.i/4 sln-) R esp, f21om(ul;), ) -.
-sqq:L ;) ~x /a 'VT(zx;) ds

8w .1* o (: ~ (59)

1S

C. 0 " " "

The results. (58) and (59) are asymptotic representations of the 21/2D

in-plane reflection response for non-zero or zero offset observations.

respectively. These formulas are starting points for either numerical

computation of the remaining integral or further asymptotic analysis - say.

stationary phase in the arc length a. Thus, we have achieved a

representation of the in-plane fields in the 2/,D case with the properties

carried out in-plane (z. = 0) and, nonetheless, the effect of geometrical

spreading is accounted for, asymptotically.

As in Section 3, we now consider the special cases of constant

background velocity and depth dependent background velocity. For the former

case, we use the results (23, (24) and (25) to obtain in place of (58)

29
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2 wip {-/4 Ren w) R sip (io~r + r W/ce)

(471)2 r I
CZa 0

(60)

E fl.r + r,1  ds

In this equation, rt is the distance defined by (22) while rl is the same

function with I replaced by . Furthermore, A is the unit upward normal to

C. .o

l)- a lr, £ = (qI- x1. 2s- x 2)/r = - co r(x ) (61)

and, from (46).

' c / - c - + ['/
R + o c (62)

f1/c + c + /
-:::,: +:!

We note, here, that 9 and P are colinear and sgn . = +1. It is apparent

from this result that we have momentarily lost the symmetry of uS in and

3. However, were we to apply the method of stationary phase to (60), we

would find that the dominant contributions to the field at I arise from the

specular points, at which " - .# and the symmetry would be restored.

Alternatively, we could redefine (62) as a reflection coefficient Rt to

-30-

%.. . . . . .. . . . .
%...... ..



S

indicate its dependence on the source point a and then replace R{ by (R +

N)/2. We leave the reflection coefficient as R and leave the option to the

reader.

For the case of backscatter, = yI, the result, (60) becomes

Iw exp02o r/col

ep (-wiI4 sins) e /s c0  P ds . (63)

SC, xs- 0

with r given by (23).

We now turn to the case of a depth dependent background velocity. In

this case, we can do little more than substitute into (58) or (60) the

parametric representations given by (32) and (34) - one for the ray family-.-0

emanating from L with ray parameter p another for the ray family emanating

from with ray parameter .

This completes the discussion of the asymptotic 21/2D in-plane upward

scattered field.
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o
S. 7ho Atfect of Variable Deasity

It is fairly straightforward to include the affects of variable density

in the results of the previous sections. Variable density does not change

the phase of the solution, but only the amplitude. Following Brekhovshikh

[1980], if we assume that u denotes pressure, then the governing equation

(1), is replaced by (op. cit., eq. (19.2))

$

pV [(l/p)Vu] +-u = - 6(x - 1 6(1x2) 6(x 1-  ) • (64)
c

In this equation, p - p(x) is the variable density.

We will again assume that u is of the form (2). However, in

anticipation of a change in amplitude (but not in phase) we shall denote the

amplitude by B:

u(0w) ~ B(x) exp (iw T(x)) (65)

The phase v is again a solution of the eikonal equation (3), but B is a

solution of the transport equation

2VB.V-c + BpV(l/p).V-c+ BV3€ = 0 (66)

i/a
If we divide here by p/, we find that

3

32 S



2V(Bp- /2 ) ,VT  + Bp- 1's VS --0 . (67)

That is, Bp- 1/ 2 satisfies the same transport equation as A does -- equation

(4) -- and hence,

B(x) = const. A(X) .p() (68)

Here, const. means constant with respect to the running parameter along the

rays. In fact, if one were given the same ray data for B as we were

previously given for A, then the initial value of B would have to agree with

the previous initial value of A. From this, it follows that

B(x) = A(x) p(x)/P(x (69)

where x. is the initial point on the ray.

The Green's function, developed in Section 2 is precisely a solution .•

for which the initial data for A at x = L -equation (6) -- now becomes the

initial data for B. Thus, from (12) we immediately determine that for 3D

propagation 0

B = (70)
4x 'le(k) p(.V. ."( U, a, })

with J again defined by (13).

33 . 9
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In the specialization of Section 3 to the in-plane 21/2D Green's

function, we find from (18) that

B - 9o(71)

with K again given by (17) and x(a,P) the solution of the ray equations in

(14). Furthermore, the representation (19) is now replaced by

47 p(L) exp (iWc) (72)

The amplitude B can be related to the amplitude B, of the two-

dimensional asymptotic Green's function by (21) with A's replaced by B's.

However, B. is related to A. by (69) with subscripts 2 introduced on both

sides of the equations.

For the case in which p and c depend only on z or x., we use (32) for T

and (34) or (35) for K.

These results are to be substituted into (72) along with

P(r() P .
q p~r.) = "(73) .-

The discussion of the in-plane Iirchhoff approximation in 2 1/lD, 

34
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presented in Section 4. must also be revised to allow for a jump in density

as well as a jump in velocity. The reflection coefficient given in (46) was

derived under the assumptions that u and Wa/On are continuous across S. For

the differential operator (64)D we must replace those conditions by the

conditions that u and (l/p) 8u/an must be continuous across S. Proceeding

as in the derivation of (46) given in [MNWP, Section 8.3], we deduce that

the proper reflection coefficient is now given by

-1 -s SP_ I O /an - p-1 Csgn aT /an] C-2 -2+[ /n*I
R =.(74)

-1 -s 0] € -_ + Sx/

p_ Dy /8n + p+ [sg - _ -+ [8-C/an
+ n jn] +

In (49), we must replace A(z;) A(z;!I) by B(z;) B(x;!) and use (74) e

for R. With these adjustments (58) is replaced by

o

-.J ew exp (3Oi/4 sagne) Rp_(z) ezp(i*[-(x:;) +
* us( ;C) [ -

(75)

• [VT(_4) + Vv(_,-!I) ds

The specialization of this result to zero offset replaces equation (59):

exp {3 l/ssn e) f Rp_(x)oetp(21wc(x;l)) ~ i
~ e p (3wi-4sgn w) _ _v_ _(z_) __._---* u( ,;k) 8, I/p(s ) Rp l .zp(2i-;.z;-)'-

C, 1)= 0 (76)

.0
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For the case of a depth dependent density function, we need only

replace p(L). p(s) and p(l) by p(ts) and p~ijj) and p(x.). respectively.

Furthermore, we use (32) and (34) for v, a. and I while still usins (74) for

R. These results can be used in (75) or (76).

Thi completes our discussion of the Variable Density case.
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6. emt ami..

A few results about wave propagation in two-and-one-half dimensions

have been derived. The first set have to do with the asymptotic radiation

of acoustic waves from a point source. The second set are related to the

Kirchhoff-approximate upward scattered field from a cylindrical surface at

depth. In both cases, we have found that the in-plane propagation of a wave

in three dimensions can be described totally in terms of in-plane

calculations which are no more difficult than would be carried out to

generate two dimensional models. 
0

In our inversion research. we regularly develop our theory as if the

observations are known over a planar array on the upper surface. However, 9

we then specialize our results to the 21 /2D case in which data is known only

on a line. We have already begun using the results described here to

generate synthetic data to test these 2 1 /,D algorithms. This was the

motivation for this project and the utility to our group has already been

demonstrated.
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TABLE I

IN-PLANE GREEN'S FUNCTION

CONS TANT DENS ITY

*c(z.z) c(z) c

.0

72,17.14 72,32,342,42

400



p TABLE I I

IN-PLANE KIRCHHOFF APPROXIMATE FIELD

COJNSTANT DENS ITY

c(z,z) c(z) c

nonzero

offset 58,46,17,14 58,46,34,32 60.61,62,23

zero

offset 59,46,17,14 59,46,34,32 63,61,62,23

VARIABLE DENS ITY

nonzero

offset 75,74,17,14 75,74,34.32

zero

offset 76,74.17.14 76,74,34,32

1 419
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